Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 27(2): e14375, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361476

ABSTRACT

Aquatic ectotherms often attain smaller body sizes at higher temperatures. By analysing ~15,000 coastal-reef fish surveys across a 15°C spatial sea surface temperature (SST) gradient, we found that the mean length of fish in communities decreased by ~5% for each 1°C temperature increase across space, or 50% decrease in mean length from 14 to 29°C mean annual SST. Community mean body size change was driven by differential temperature responses within trophic groups and temperature-driven change in their relative abundance. Herbivores, invertivores and planktivores became smaller on average in warmer temperatures, but no trend was found in piscivores. Nearly 25% of the temperature-related community mean size trend was attributable to trophic composition at the warmest sites, but at colder temperatures, this was <1% due to trophic groups being similarly sized. Our findings suggest that small changes in temperature are associated with large changes in fish community composition and body sizes, with important ecological implications.


Subject(s)
Fishes , Animals , Temperature , Body Size
2.
Sci Data ; 11(1): 48, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191576

ABSTRACT

A new database on historical country-level fishing fleet capacity and effort is described, derived from a range of publicly available sources that were harmonized, converted to fishing effort, and mapped to 30-min spatial cells. The resulting data is comparable with widely used but more temporally-limited satellite-sourced Automatic Identification System (AIS) datasets for large vessels, while also documenting important smaller fleets and artisanal segments. It ranges from 1950 to 2017, and includes information on number of vessels, engine power, gross tonnage, and nominal effort, categorized by vessel length, gear type and targeted functional groups. The data can be aggregated to Large Marine Ecosystem, region and/or fishing country scales and provides a temporally and spatially explicit source for fishing effort and fleet capacity for studies aimed at understanding the implications of long-term changes in fishing activity in the global ocean.

3.
PLoS Biol ; 21(12): e3002392, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38079442

ABSTRACT

The multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species' biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems.


Subject(s)
Climate Change , Ecosystem , Animals , Food Chain , Biomass , Oceans and Seas , Fishes/physiology
4.
Biol Lett ; 19(10): 20230142, 2023 10.
Article in English | MEDLINE | ID: mdl-37875159

ABSTRACT

Body-size relationships between predators and prey exhibit remarkable diversity. However, the assumption that predators typically consume proportionally smaller prey often underlies size-dependent predation in ecosystem models. In reality, some animals can consume larger prey or exhibit limited changes in prey size as they grow larger themselves. These distinct predator-prey size relationships challenge the conventional assumptions of traditional size-based models. Cephalopods, with their diverse feeding behaviours and life histories, offer an excellent case study to investigate the impact of greater biological realism in predator-prey size relationships on energy flow within a size-structured ecosystem model. By categorizing cephalopods into high and low-activity groups, in line with empirically derived, distinct predator-prey size relationships, we found that incorporating greater biological realism in size-based feeding reduced ecosystem biomass and production, while simultaneously increasing biomass stability and turnover. Our results have broad implications for ecosystem modelling, since distinct predator-prey size relationships extend beyond cephalopods, encompassing a wide array of major taxonomic groups from filter-feeding fishes to baleen whales. Incorporating a diversity of size-based feeding in food web models can enhance their ecological and predictive accuracy when studying ecosystem dynamics.


Subject(s)
Ecosystem , Food Chain , Animals , Biomass , Body Size , Feeding Behavior , Predatory Behavior , Models, Biological
5.
PLoS One ; 18(8): e0287570, 2023.
Article in English | MEDLINE | ID: mdl-37611010

ABSTRACT

Marine animal biomass is expected to decrease in the 21st century due to climate driven changes in ocean environmental conditions. Previous studies suggest that the magnitude of the decline in primary production on apex predators could be amplified through the trophodynamics of marine food webs, leading to larger decreases in the biomass of predators relative to the decrease in primary production, a mechanism called trophic amplification. We compared relative changes in producer and consumer biomass or production in the global ocean to assess the extent of trophic amplification. We used simulations from nine marine ecosystem models (MEMs) from the Fisheries and Marine Ecosystem Models Intercomparison Project forced by two Earth System Models under the high greenhouse gas emissions Shared Socioeconomic Pathways (SSP5-8.5) and a scenario of no fishing. Globally, total consumer biomass is projected to decrease by 16.7 ± 9.5% more than net primary production (NPP) by 2090-2099 relative to 1995-2014, with substantial variations among MEMs and regions. Total consumer biomass is projected to decrease almost everywhere in the ocean (80% of the world's oceans) in the model ensemble. In 40% of the world's oceans, consumer biomass was projected to decrease more than NPP. Additionally, in another 36% of the world's oceans consumer biomass is expected to decrease even as projected NPP increases. By analysing the biomass response within food webs in available MEMs, we found that model parameters and structures contributed to more complex responses than a consistent amplification of climate impacts of higher trophic levels. Our study provides additional insights into the ecological mechanisms that will impact marine ecosystems, thereby informing model and scenario development.


Subject(s)
Ecosystem , Food Chain , Animals , Nutritional Status , Climate , Biomass
6.
J Fish Biol ; 103(5): 1003-1014, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37410553

ABSTRACT

Fed aquaculture is one of the fastest-growing and most valuable food production industries in the world. The efficiency with which farmed fish convert feed into biomass influences both environmental impact and economic revenue. Salmonid species, such as king salmon (Oncorhynchus tshawytscha), exhibit high levels of plasticity in vital rates such as feed intake and growth rates. Accurate estimations of individual variability in vital rates are important for production management. The use of mean trait values to evaluate feeding and growth performance can mask individual-level differences that potentially contribute to inefficiencies. Here, the authors apply a cohort integral projection model (IPM) framework to investigate individual variation in growth performance of 1625 individually tagged king salmon fed one of three distinct rations of 60%, 80%, and 100% satiation and tracked over a duration of 276 days. To capture the observed sigmoidal growth of individuals, they compared a nonlinear mixed-effects (logistic) model to a linear model used within the IPM framework. Ration significantly influenced several aspects of growth, both at the individual and at the cohort level. Mean final body mass and mean growth rate increased with ration; however, variance in body mass and feed intake also increased significantly over time. Trends in mean body mass and individual body mass variation were captured by both logistic and linear models, suggesting the linear model to be suitable for use in the IPM. The authors also observed that higher rations resulted in a decreasing proportion of individuals reaching the cohort's mean body mass or larger by the end of the experiment. This suggests that, in the present experiment, feeding to satiation did not produce the desired effects of efficient, fast, and uniform growth in juvenile king salmon. Although monitoring individuals through time is challenging in commercial aquaculture settings, recent technological advances combined with an IPM approach could provide new scope for tracking growth performance in experimental and farmed populations. Using the IPM framework might allow the exploration of other size-dependent processes affecting vital rate functions, such as competition and mortality.


Subject(s)
Salmon , Salmonidae , Humans , Animals , Eating , Aquaculture
7.
Curr Biol ; 33(5): 990-997.e4, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36787746

ABSTRACT

Food production, particularly of fed animals, is a leading cause of environmental degradation globally.1,2 Understanding where and how much environmental pressure different fed animal products exert is critical to designing effective food policies that promote sustainability.3 Here, we assess and compare the environmental footprint of farming industrial broiler chickens and farmed salmonids (salmon, marine trout, and Arctic char) to identify opportunities to reduce environmental pressures. We map cumulative environmental pressures (greenhouse gas emissions, nutrient pollution, freshwater use, and spatial disturbance), with particular focus on dynamics across the land and sea. We found that farming broiler chickens disturbs 9 times more area than farming salmon (∼924,000 vs. ∼103,500 km2) but yields 55 times greater production. The footprints of both sectors are extensive, but 95% of cumulative pressures are concentrated into <5% of total area. Surprisingly, the location of these pressures is similar (85.5% spatial overlap between chicken and salmon pressures), primarily due to shared feed ingredients. Environmental pressures from feed ingredients account for >78% and >69% of cumulative pressures of broiler chicken and farmed salmon production, respectively, and could represent a key leverage point to reduce environmental footprints. The environmental efficiency (cumulative pressures per tonne of production) also differs geographically, with areas of high efficiency revealing further potential to promote sustainability. The propagation of environmental pressures across the land and sea underscores the importance of integrating food policies across realms and sectors to advance food system sustainability.


Subject(s)
Chickens , Salmon , Animals , Seafood , Agriculture , Farms , Aquaculture
8.
Bioscience ; 72(11): 1062-1073, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36506699

ABSTRACT

Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity-ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals.

9.
Fish Fish (Oxf) ; 23(4): 800-811, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35912069

ABSTRACT

Wild-caught fish are a bioavailable source of nutritious food that, if managed strategically, could enhance diet quality for billions of people. However, optimising nutrient production from the sea has not been a priority, hindering development of nutrition-sensitive policies. With fisheries management increasingly effective at rebuilding stocks and regulating sustainable fishing, we can now begin to integrate nutritional outcomes within existing management frameworks. Here, we develop a conceptual foundation for managing fisheries for multispecies Maximum Nutrient Yield (mMNY). We empirically test our approach using size-based models of North Sea and Baltic Sea fisheries and show that mMNY is predicted by the relative contribution of nutritious species to total catch and their vulnerability to fishing, leading to trade-offs between catch and specific nutrients. Simulated nutrient yield curves suggest that vitamin D, which is deficient in Northern European diets, was underfished at fishing levels that returned maximum catch weights. Analysis of global catch data shows there is scope for nutrient yields from most of the world's marine fisheries to be enhanced through nutrient-sensitive fisheries management. With nutrient composition data now widely available, we expect our mMNY framework to motivate development of nutrient-based reference points in specific contexts, such as data-limited fisheries. Managing for mMNY alongside policies that promote access to fish could help close nutrient gaps for coastal populations, maximising the contribution of wild-caught fish to global food and nutrition security.

10.
Nat Commun ; 13(1): 3530, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35790744

ABSTRACT

Climate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status.


Subject(s)
Climate Change , Fisheries , Agriculture , Indonesia , Madagascar
11.
Glob Chang Biol ; 28(21): 6239-6253, 2022 11.
Article in English | MEDLINE | ID: mdl-35822557

ABSTRACT

Resolving the combined effect of climate warming and exploitation in a food web context is key for predicting future biomass production, size-structure and potential yields of marine fishes. Previous studies based on mechanistic size-based food web models have found that bottom-up processes are important drivers of size-structure and fisheries yield in changing climates. However, we know less about the joint effects of 'bottom-up' and physiological effects of temperature; how do temperature effects propagate from individual-level physiology through food webs and alter the size-structure of exploited species in a community? Here, we assess how a species-resolved size-based food web is affected by warming through both these pathways and by exploitation. We parameterize a dynamic size spectrum food web model inspired by the offshore Baltic Sea food web, and investigate how individual growth rates, size-structure, and relative abundances of species and yields are affected by warming. The magnitude of warming is based on projections by the regional coupled model system RCA4-NEMO and the RCP 8.5 emission scenario, and we evaluate different scenarios of temperature dependence on fish physiology and resource productivity. When accounting for temperature-effects on physiology in addition to on basal productivity, projected size-at-age in 2050 increases on average for all fish species, mainly for young fish, compared to scenarios without warming. In contrast, size-at-age decreases when temperature affects resource dynamics only, and the decline is largest for young fish. Faster growth rates due to warming, however, do not always translate to larger yields, as lower resource carrying capacities with increasing temperature tend to result in decline in the abundance of larger fish and hence spawning stock biomass. These results suggest that to understand how global warming affects the size structure of fish communities, both direct metabolic effects and indirect effects of temperature via basal resources must be accounted for.


Subject(s)
Climate Change , Fishes , Animals , Ecosystem , Fisheries , Fishes/physiology , Food Chain , Temperature
12.
Proc Natl Acad Sci U S A ; 119(22): e2120817119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35605118

ABSTRACT

Fish are an important source of bioavailable micronutrients and essential fatty acids, and capture fisheries have potential to substantially reduce dietary deficiencies. Vigorous debate has focused on trade and fishing in foreign waters as drivers of inequitable distribution of volume and value of fish, but their impact on nutrient supplies from fish is unknown. We analyze global catch, trade, and nutrient composition data for marine fisheries to quantify distribution patterns among countries with differing prevalence of inadequate nutrient intake. We find foreign fishing relocates 1.5 times more nutrients than international trade in fish. Analysis of nutrient flows among countries of different levels of nutrient intake shows fishing in foreign waters predominantly (but not exclusively) benefits nutrient-secure nations, an outcome amplified by trade. Next, we developed a nutritional vulnerability framework that shows those small island developing states and/or African nations currently benefiting from trade and foreign fishing, and countries with low adaptive capacity, are most vulnerable to future changes in nutrient supplies. Climate change exacerbates vulnerabilities for many nations. Harnessing the potential of global fisheries to address dietary deficiencies will require greater attention to nutrition objectives in fisheries' licensing deals and trade negotiations.


Subject(s)
Internationality , Malnutrition , Animals , Commerce , Conservation of Natural Resources , Fisheries , Fishes , Food Supply , Humans , Hunting , Nutrients
13.
Ecol Evol ; 12(4): e8789, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35414896

ABSTRACT

Climate change and fisheries exploitation are dramatically changing the abundances, species composition, and size spectra of fish communities. We explore whether variation in 'abundance size spectra', a widely studied ecosystem feature, is influenced by a parameter theorized to govern the shape of size-structured ecosystems-the relationship between the sizes of predators and their prey (predator-prey mass ratios, or PPMRs). PPMR estimates are lacking for avast number of fish species, including at the scale of trophic guilds. Using measurements of 8128 prey items in gut contents of 97 reef fish species, we established predator-prey mass ratios (PPMRs) for four major trophic guilds (piscivores, invertivores, planktivores, and herbivores) using linear mixed effects models. To assess the theoretical predictions that higher community-level PPMRs leads to shallower size spectrum slopes, we compared observations of both ecosystem metrics for ~15,000 coastal reef sites distributed around Australia. PPMRs of individual fishes were remarkably high (median ~71,000), with significant variation between different trophic guilds (~890 for piscivores; ~83,000 for planktivores), and ~8700 for whole communities. Community-level PPMRs were positively related to size spectrum slopes, broadly consistent with theory, however, this pattern was also influenced by the latitudinal temperature gradient. Tropical reefs showed a stronger relationship between community-level PPMRs and community size spectrum slopes than temperate reefs. The extent that these patterns apply outside Australia and consequences for community structure and dynamics are key areas for future investigation.

14.
Nat Clim Chang ; 11(11): 973-981, 2021.
Article in English | MEDLINE | ID: mdl-34745348

ABSTRACT

Projections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning.

15.
Nat Ecol Evol ; 5(11): 1478-1489, 2021 11.
Article in English | MEDLINE | ID: mdl-34556829

ABSTRACT

Ecological communities face a variety of environmental and anthropogenic stressors acting simultaneously. Stressor impacts can combine additively or can interact, causing synergistic or antagonistic effects. Our knowledge of when and how interactions arise is limited, as most models and experiments only consider the effect of a small number of non-interacting stressors at one or few scales of ecological organization. This is concerning because it could lead to significant underestimations or overestimations of threats to biodiversity. Furthermore, stressors have been largely classified by their source rather than by the mechanisms and ecological scales at which they act (the target). Here, we argue, first, that a more nuanced classification of stressors by target and ecological scale can generate valuable new insights and hypotheses about stressor interactions. Second, that the predictability of multiple stressor effects, and consistent patterns in their impacts, can be evaluated by examining the distribution of stressor effects across targets and ecological scales. Third, that a variety of existing mechanistic and statistical modelling tools can play an important role in our framework and advance multiple stressor research.


Subject(s)
Anthropogenic Effects , Ecosystem , Biodiversity , Biota
16.
Ecol Lett ; 24(10): 2146-2154, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34291561

ABSTRACT

Among the more widely accepted general hypotheses in ecology is that community relationships between abundance and body size follow a log-linear size spectrum, from the smallest consumers to the largest predators (i.e. 'bacteria to whales'). Nevertheless, most studies only investigate small subsets of this spectrum, and note that extreme size classes in survey data deviate from linear expectations. In this study, we fit size spectra to field data from 45 rocky and coral reef sites along a 28° latitudinal gradient, comprising individuals from 0.125 mm to 2 m in body size. We found that 96% of the variation in abundance along this 'extended' size gradient was described by a single linear function across all sites. However, consistent 'wobbles' were also observed, with subtle peaks and troughs in abundance along the spectrum, which varied with sea temperature, as predicted by theory relating to trophic cascades.


Subject(s)
Copepoda , Sharks , Animals , Body Size , Coral Reefs , Ecology
17.
Ecol Evol ; 11(1): 227-241, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437425

ABSTRACT

Understanding regional-scale food web structure in the Southern Ocean is critical to informing fisheries management and assessments of climate change impacts on Southern Ocean ecosystems and ecosystem services. Historically, a large component of Southern Ocean ecosystem research has focused on Antarctic krill, which provide a short, highly efficient food chain, linking primary producers to higher trophic levels. Over the last 15 years, the presence of alternative energy pathways has been identified and hypotheses on their relative importance in different regions raised. Using the largest circumpolar dietary database ever compiled, we tested these hypotheses using an empirical circumpolar comparison of food webs across the four major regions/sectors of the Southern Ocean (defined as south of 40°S) within the austral summer period. We used network analyses and generalizations of taxonomic food web structure to confirm that while Antarctic krill are dominant as the mid-trophic level for the Atlantic and East Pacific food webs (including the Scotia Arc and Western Antarctic Peninsula), mesopelagic fish and other krill species are dominant contributors to predator diets in the Indian and West Pacific regions (East Antarctica and the Ross Sea). We also highlight how tracking data and habitat modeling for mobile top predators in the Southern Ocean show that these species integrate food webs over large regional scales. Our study provides a quantitative assessment, based on field observations, of the degree of regional differentiation in Southern Ocean food webs and the relative importance of alternative energy pathways between regions.

18.
Trends Ecol Evol ; 36(1): 76-86, 2021 01.
Article in English | MEDLINE | ID: mdl-33097289

ABSTRACT

Transfer efficiency is the proportion of energy passed between nodes in food webs. It is an emergent, unitless property that is difficult to measure, and responds dynamically to environmental and ecosystem changes. Because the consequences of changes in transfer efficiency compound through ecosystems, slight variations can have large effects on food availability for top predators. Here, we review the processes controlling transfer efficiency, approaches to estimate it, and known variations across ocean biomes. Both process-level analysis and observed macroscale variations suggest that ecosystem-scale transfer efficiency is highly variable, impacted by fishing, and will decline with climate change. It is important that we more fully resolve the processes controlling transfer efficiency in models to effectively anticipate changes in marine ecosystems and fisheries resources.


Subject(s)
Ecosystem , Food Chain , Climate Change , Fisheries
19.
Ecol Lett ; 24(3): 572-579, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33331673

ABSTRACT

The frequency distribution of individual body sizes in animal communities (i.e. the size spectrum) provides powerful insights for understanding the energy flux through food webs. However, studies of size spectra in rocky and coral reef communities typically focus only on fishes or invertebrates due to taxonomic and data constraints, and consequently ignore energy pathways involving the full range of macroscopic consumer taxa. We analyse size spectra with co-located fish and mobile macroinvertebrate data from 3369 reef sites worldwide, specifically focusing on how the addition of invertebrate data alters patterns. The inclusion of invertebrates steepens the size spectrum, more so in temperate regions, resulting in a consistent size spectrum slope across latitudes, and bringing slopes closer to theoretical expectations based on energy flow through the system. These results highlight the importance of understanding contributions of both invertebrates and fishes to reef food webs worldwide.


Subject(s)
Coral Reefs , Fishes , Animals , Body Size , Food Chain , Invertebrates
20.
J Anim Ecol ; 89(11): 2692-2703, 2020 11.
Article in English | MEDLINE | ID: mdl-32895913

ABSTRACT

Individual body size strongly influences the trophic role of marine organisms and the structure and function of marine ecosystems. Quantifying trophic position-individual body size relationships (trophic allometries) underpins the development of size-structured ecosystem models to predict abundance and the transfer of energy through ecosystems. Trophic allometries are well studied for fishes but remain relatively unexplored for cephalopods. Cephalopods are important components of coastal, oceanic and deep-sea ecosystems, and they play a key role in the transfer of biomass from low trophic positions to higher predators. It is therefore important to resolve cephalopod trophic allometries to accurately represent them within size-structured ecosystem models. We assessed the trophic positions of cephalopods in an oceanic pelagic (0-500 m) community (sampled by trawling in a cold-core eddy in the western Tasman Sea), comprising 22 species from 12 families, using bulk tissue stable isotope analysis and amino acid compound-specific stable isotope analysis. We assessed whether ontogenetic trophic position shifts were evident at the species-level and tested for the best predictor of community-level trophic allometry among body size, taxonomy and functional grouping (informed by fin and mantle morphology). Individuals in this cephalopod community spanned two trophic positions and fell into three functional groups on an activity level gradient: low, medium and high. The relationship between trophic position and ontogeny varied among species, with the most marked differences evident between species from different functional groups. Activity-level-based functional group and individual body size are best explained by cephalopod trophic positions (marginal R2  = 0.43). Our results suggest that the morphological traits used to infer activity level, such as fin-to-mantle length ratio, fin musculature and mantle musculature are strong predictors of cephalopod trophic allometries. Contrary to established theory, not all cephalopods are voracious predators. Low activity level cephalopods have a distinct feeding mode, with low trophic positions and little-to-no ontogenetic increases. Given the important role of cephalopods in marine ecosystems, distinct feeding modes could have important consequences for energy pathways and ecosystem structure and function. These findings will facilitate trait-based and other model estimates of cephalopod abundance in the changing global ocean.


Subject(s)
Cephalopoda , Ecosystem , Animals , Aquatic Organisms , Food Chain , Nutritional Status , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...